20 Lexical Storage and Phonological Change

Geert Booij

20.1 Introduction

Empirical investigations of the division of labor between storage and computation in language behavior can be executed in a number of ways. An obvious one is that of psycholinguistic experimentation. Another way, which will be focused on in this paper, is language change. Language change is a psycholinguistic laboratory of nature, a window on how speakers produce and interpret language. For example, if a language loses a phonological rule while the effects of that rule are preserved in a number of words, a possible explanation is that the outputs of that rule must have been stored at the stage when the phonological rule was still active and thus survived after the loss of that rule. The question that I will address in this paper is how far phonological change provides evidence for the kinds of phonological information about lexical items stored in lexical memory. That is, whereas Kiparsky in his early work on phonological change since 1965 (compiled in Kiparsky 1982a) focused on phonological change as evidence for the structure of the grammar, I will take a different, extra-grammatical perspective and ask what we can learn from phonological change about lexical memory. Asking this question is also in line with Kiparsky's conclusion at the end of his book Explanation in Phonology that linguistic change does not provide a window on the structure of the grammar as directly as was hypothesized in Kiparsky 1968c: “Before we can exploit historical evidence for synchronic purposes we need a firm theory of the intervening factors” (Kiparsky 1982a, 234). Lexical storage is certainly one of these intervening factors that deserve more detailed investigation.

A necessary preliminary remark is that the issue of storage versus computation with respect to a specific regularity of a language is not a matter of “either ... or.” The conclusion that a particular linguistic form must be stored in the lexicon does not preclude the existence of a rule that accounts for most or all of the properties of that form. This position has not been a standard one in Generative Grammar, which has always been strongly influenced by the Bloomfieldian view of the lexicon as the basic list of irregularities. For instance, Kenstowicz (1994, 60) motivates the claim that predictable information is not stored lexically as follows.
(1) "Generative grammar's answer to this question is based on the hypothesis that the human capacity for language is designed in such a way as to minimize the amount of information that must be stored in the speaker's mental lexicon."

However, a few pages later in the same book, Kenstowicz (1994, 69-70) points out that this point of view is no longer self-evident: "with the advent of neural science and more accurate estimates of the capacity of the human brain, this "economy of storage" argument is not compelling in and of itself." What I suspect is that the storage argument given in (1) has never been a serious consideration. Rather, the aim has always been to give an elegant and formally as simple as possible analysis of the distribution and alternation patterns of a language.

In the area of Generative Morphology, linguists have always been aware of the possible and even necessary simultaneity of rules and stored outputs. Many complex words, once formed, must be lexically stored because they have unpredictable formal and/or semantic properties. Nevertheless, the rules that created these complex words may still be productive. Jackendoff (1975) therefore advocated a view of morphological rules in which these rules function as redundancy rules with respect to existing complex lexical items, but this does not exclude their creative use for the coining of new complex words. That is, predictable information can be lexically stored, and redundancy rules tell us which part of that information is predictable, that is, does not count as independent information. Similar views were defended by Aronoff (1976) and Booij (1977a, 1977b). In sum, we should avoid what has been called the "rule/list fallacy" by Langacker (1987, 29), namely, the reasoning in which lists and rules are mutually exclusive.

In fact, the relation between lexical storage and morphological rules is even stronger and of a more principled nature: a morphological rule does not exist without a set of listed words instantiating that rule. The native speaker first acquires complex words. It is on the basis of recurring patterns in sets of similar complex words with a systematic pairing of form and meaning that the speaker may conclude the existence of a morphological rule, which then may result in extension of the set of words of that particular form.¹

This view of morphology presupposes that words (and idioms), not morphemes, are the units of lexical storage. The role of morphemes in the analysis of word structure is of a secondary nature: they play a role in establishing the relations between words but are not the primary building blocks of complex words.²

As mentioned above, in Generative Grammar the prevailing tendency has been to reduce the lexical storage of allomorphy as much as possible. Allomorphy is accounted for in terms of one underlying form for each morpheme and a set of rules for the computation of the actual surface allomorphs. In addition, predictable phonetic details are omitted from lexical representations: it is only phonemic distinctions,
that is, contrastive phonetic properties, that are encoded in lexical representations. The adage is what can be computed, should not be stored. This relates to the well-known abstractness controversy: the more abstract our phonology is, the more we can derive different surface forms from the same underlying representation. Linguists have tried to tackle this issue by looking at phonological change (Kiparsky 1968c), whereas psycholinguists have been trying to solve this problem by means of psycho-linguistic evidence (cf. Lahiri and Marslen-Wilson 1992). In the beginning of the 1970s, Bybee and Vennemann argued in favor of a concrete view of phonological representations, partially on the basis of facts of language change (Hooper 1974b; Vennemann 1974).

Generative phonologists, however, differ in the degree to which they strive for redundancy-free representations, as shown by the debate on underspecification. For instance, in Dutch the velarity of a nasal is contrastive word finally but not before a velar obstruent. Should we therefore omit the specification for place in the lexical representation of velar nasals before velar stops? This is not obvious, and Anderson (1985, 136f) has warned us that the idea that linguistic representations should be redundancy free is by no means self-evident, and probably wrong. The principle of “Lexicon Optimization” advocated by phonologists working within Optimality Theory (Archangeli and Langendoen 1997) also implies that redundant, nondistinctive phonological information will be stored in lexical representations: the faithfulness condition implies that inputs should differ minimally from the corresponding outputs (see Archangeli and Langendoen 1997, 201ff).

Although there are differences in the degree of abstractness that generative phonologists allow for, most generative phonologists assume that at least the effect of automatic phonological rules should not be encoded in the lexical representations of morphemes and words, because they are always computable on the basis of purely phonological information. However, we should not take this position for granted given the storage capacity of human memory.

Even if one is willing to accept the storage of the effects of phonological rules, the information stored may still be abstract in the sense that it is phonemes that are stored and not the actual details of the phonetic realization of these phonemes. This is what most generative phonologists assume, even those who advocate a concrete kind of phonology: the phonetic details, such as the acoustic parameters for a particular vowel, are not specified as such in lexical representations but accounted for by the set of language-specific rules of phonetic implementation. However, this position has recently been attacked, for instance in Flemming (1995) and Bybee (2000b). This issue will be returned to in section 20.5.

In sum, there are three kinds of phonetically relevant information with respect to which the lexical representation is a point of discussion: (i) predictable phonetic properties that have a contrastive function in some contexts, such as the place of
articulation of nasals; (ii) the effects of phonological processes that create alternations; and (iii) details of phonetic realization.

The point of departure for our discussion is that we know that the vastness of the lexical memory allows us to store much of what can be computed, even though it is completely regular, since it will speed up processing. In the area of morphology, there is solid evidence for the storage of frequent plural nouns in a number of languages (Baayen et al. 1997). The same applies to the syntactic level. There are thousands of noun phrases of the type adjective + noun, such as yellow pages, red tape, green card, black hole, hard disk, little toe, that are listed in our lexical memory because they function as names for things (see Jackendoff 1997, chapter 7); yet this does not imply that we do not have a productive rule for the construction of such noun phrases.

Given these general considerations about the possibility of storage, and given that there is no conflict between storage and regularity/productivity, it is important to ask ourselves how we can find out about the realities of storage without an a priori positions as to what is memorized in the form of lexical representations and what in the form of rules. In this chapter, I will use facts of phonological change as one possible type of evidence for storage and provide evidence for surface forms of words being stored.

Another general issue that should be addressed before going into the details of phonological change is that it is often taken for granted that the notions "lexical representation" in the sense of "the form of a word that is the starting point of morphological operations" and "lexical representation" in the sense of "stored information about a lexical item" coincide. This is not a logical necessity, however. Take a simple case like the following pair of nouns from Dutch.

(2) hoed 'hat' [hut], plural hoeden [hudan]

The standard assumption is to assume /hud/ as the lexical representation for hoed

and derive the phonetic form of the singular from this underlying form by means of the rule of Auslautverhärtung. However, it is also logically possible that we store [hut] as the singular form and in addition the basic form /hud/, based on the alternation [hut]/[hudan]. It is even possible that we do not store an underlying form like /hud/ at all and only compute it from the stored phonetic form if we need to do so because we want to apply a morphological operation to that word. In other words, we then reverse the classical analysis: phonetic forms are stored, and underlying forms are computed. This option will be discussed in more detail below.

20.2 Phonemicization of Allophonic Properties

A number of Germanic languages have seen the loss of the stop in word-final clusters of velar nasal + velar stop. For instance, Middle Dutch conine [kɔːnɪŋk] 'king' be-
came *koning* [kɔnɪn] in Modern Dutch. Thus, the property of the nasal consonant that it is velar before a velar stop lost its allophonic nature and became phonemized: words ending in [n] now contrast with words ending in [m] or [n]. Does this phonological change tell us something about the lexical storage of the place of articulation of the nasal before the following stop got lost and thus about the storage of redundant properties?

In a classical rule-based analysis of phonological change, the answer is negative: the nasal can be underspecified at the underlying level (usually graphically represented as N). Two rules apply: the rule that spreads place of articulation from the stop to the nasal and, subsequently, a rule of cluster simplification that deletes the stop (the addition of this rule is the change in the grammar of the adult). The surface form of *coninc* is therefore [kɔnɪn]. The child will then store this surface form as the underlying form, thus giving phonemic status to the velar nasal.

This account of phonological change makes a sharp distinction between the two generations involved in a change: the adult generation and the next generation that has to acquire the language system. It is doubtful, however, whether such a sharp distinction is justified. It is quite clear that adult speakers also continuously subject the outputs of their language system to reanalysis, that is, there is a continuous inspection of output forms (see Bynon 1977; Hopper and Traugott 1993). The possibility of inspection and reanalysis presupposes that these output forms are stored: have a certain degree of permanence in memory. Moreover, this also enables us to explain phonological change. In the present example, the loss of a final obstruct, the speaker can conclude that the final obstruct can be omitted without the loss of distinction between words, because the place of articulation of the nasal will suffice to distinguish a word like *zing* [zin] ‘to sing’ from *zin* [zin] ‘sense’.

Specification of place of articulation of the nasal in the word-final consonant cluster is also necessary for theory-internal reasons if we take a constraint-based approach to phonology instead of the traditional rule-based approach. The rule-based analysis makes crucial use of rule ordering of a particular type, nonbleeding order, and of the assumption that a phonological change is to be seen as a rule that is always added at the end of the grammar. If we take an Optimality-theoretical constraint-based approach, it is immediately clear that the velarity of the nasal should be part of the lexical representation even before the loss of the final obstruct: an underspecified representation will induce an extra violation of faithfulness compared to a fully specified lexical representation, which goes against the principle of Lexicon Optimization. The surfacing of the velar nasal is then straightforward: the change involved is that the constraint *CC-VELAR* (a constraint belonging to the family of constraints on consonant clustering) that forbids velar consonant clusters is ranked higher than MAX-IO (a faithfulness constraint that requires identity of input and output).
492

If an underspecified lexical representation (forbidden by the principle of Lexicon Optimization, at least if no alternation is involved, see Inkelas 1995) had been assumed for the velar nasal, we would predict the underspecified nasal to surface as coronal [n] since this is the default value for nasal consonants. (I assume that default values are expressed by markedness constraints such as Coronal: the default place of articulation of consonants is coronal, and the place of articulation must be specified, the constraint of Full Specification).

<table>
<thead>
<tr>
<th>/koːn̩ŋk/</th>
<th>FULL SPECIFICATION</th>
<th>*CC-VELAR</th>
<th>CORONAL</th>
<th>MAX-IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>koːnŋk</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>koːn̩ŋ</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ɛ̃ koːn̩ŋ</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In conclusion, given a constraint-based analysis, the only way the velar nasal will surface after the diachronic process of velar cluster simplification is by specifying the place of articulation of this nasal consonant at the level of lexical representation. We should note, however, that this kind of evidence for lexical storage of predictable properties is theory dependent, since, as we saw above, a rule-based analysis did not imply lexical storage of the place of articulation of the nasal.

20.3 Phonologization and Lexicalization: Vowel Lengthening in Dutch

Another relevant case of phonologization of allophonic properties is that of vowel lengthening in open syllables in Early Middle Dutch. This process affected both simplex nouns and complex nouns and even word+clitic combinations.

(5) a. Simplex nouns
 name ‘name’ n[aː]me
 smake ‘taste’ sm[aː]ke
 stave ‘staff’ st[aː]ve
Lexical Storage and Phonological Change

b. Singular
| sch[ə]p ‘ship’ |
| h[e]:l-en ‘hole’ |
| oor[ə]:g ‘war’ |
| d[a]:g ‘day’ |

c. Word + clitic
| saetic /sat tk/ |

The singular-plural pairs in (5b) have been preserved in modern Dutch (see Booij 1995; Kager, this volume). This process of vowel lengthening is a manifestation of a much more general tendency in Germanic languages toward a requirement that stressed syllables must be heavy, that is, they cannot end in a short vowel but must contain minimally either a long vowel or a short vowel followed by a consonant (also known as Prokosch’s Law).

In the first stage of this process in Early Middle Dutch (see Van Loon 1986, 89), the lengthening of the vowel was an allophonic process. In the course of time (probably in the 12th century), however, the lengthened vowel was phonemicized, that is, it became an underlying long vowel.

How do we know this? The first evidence concerns short vowels followed by geminate consonants. These were protected from lengthening because the first half of the geminate closes the syllable. In the 12th century, degemination took place. Yet, the short vowels that thus ended up in open syllables did not lengthen anymore, and so we find many words with short vowels followed by only one consonant, such as wikke [wikke] ‘vetch’. That is, the following development took place.

(6) VCV > VːCV (predictably long vowel) > VːCV (phonemic long vowel)
 VCCV > VːCV (predictably short vowel) > VːCV (phonemic short vowel)

These changes are illustrated by the following minimal pair (Van Loon 1986, 89).

<table>
<thead>
<tr>
<th>Early Germanic</th>
<th>Early Middle Dutch</th>
<th>Modern Dutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>wikka [wikka] ‘vetch’</td>
<td>weke [we:ka]</td>
<td>week [we:k]</td>
</tr>
</tbody>
</table>

The classical generative interpretation of this kind of phonemicization is as follows (Kiparsky 1968b): The initial change is the addition of a rule of degemination to the phonological system of the adult speakers. This rule of degemination made the alternation between long and short vowels in the output forms opaque; vowel lengthening is ordered before degemination, and this is a nonbleeding order. The next generation of language users therefore interpreted the length contrast as a phonemic contrast, and hence the length contrast became part of the lexical representation. In addition, the process of vowel lengthening in open syllables disappeared.
A second kind of evidence for the phonemicization of these initially allophonic contrasts for simplex nouns is provided by the later process of schwa apocope (thirteenth century). This phonological change did not affect the length of the vowel in the simplex nouns ending in schwa: after apocope the vowels of words such as naam 'name' (<name) and smaak ‘taste’ (<smake) stayed long. Again, vowel lengthening became opaque, and the next generation had to store the vowel length as part of the lexical representation. The phonemicization process even led to doublets such as bar ‘raw’ - baar ‘ready (money)’ and staf ‘staff’ - staaf ‘bar’, a process that can be expected given the phonemicization of vowel length.

This account in terms of rule opacity does not explain, however, why the alternation between long and short vowels was kept in certain cases such as those in the singular-plural pairs in (5b) above. When vowel lengthening disappeared, the length alternation should also have disappeared. The fact that it was kept for a number of words shows that in these cases the plural forms must have been stored in their phonetic form, with a long vowel in the stressed syllable, at a time when the alternation was still governed by a phonological rule. In addition, it also shows that plural forms of nouns can be lexically stored, a conclusion that is confirmed by recent psycholinguistic evidence, as I mentioned above (see Baayen et al. 1997).

The traditional generative account of this change (Kiparsky 1968b) would read as follows. Each new generation of speakers has to discover the rules of its native language on the basis of the phonetic outputs encountered. First, they will simply store the phonetic output forms of words. Once they have discovered the phonological regularities involved, they will replace each set of related phonetic output forms with one common underlying phonological form (so-called restructuring). If, for some reason, a particular phonological regularity (such as vowel lengthening in open syllables, the process discussed here) is not grasped by the new generation, there will be no restructuring: the stored phonetic forms will remain memorized as is, and if new words or word forms are coined, they will not be affected by that rule. Hence, the rule disappears, and only those words for which the different surface form had already been stored in lexical memory will keep that alternation.

However, this reasoning clearly presupposes that output forms are stored in the initial stages of acquisition. The question, then, is why native speakers would change, and even erase, that information about output forms in a later stage of acquisition once they have discovered the phonological regularity involved. Given the vastness of human memory, there is no reason not to keep that information in lexical memory and to use the phonological rule that can be discovered on the basis of related output forms for the computation of the phonetic shape of new words and word forms only. Thus, we get a natural division of labor between storage and computation: output forms, once heard, may be stored, and rules, once discovered, are used to interpret
phonetically similar forms as instantiations of the same morpheme and for the computation of the phonetic forms of new words.

For those words for which there was no alternation involved, such as weke versus wikke given in (7), the assumption of storage in memory of the output forms by adult speakers is also necessary. Only if we assume that predictable length differences are stored can we explain why the rule of degemination was added to the adult grammar: the addition of degemination has been made possible by the length difference, because the latter could now serve to keep words phonetically distinct. The language user is able to survey and inspect the phonetic output forms of words in memory and can thus conclude that the distinction between single and geminate consonants is redundant, given a concomitant distinction in vowel length. The emergence of degemination can therefore be seen as the result of storage in speakers’ memory of output forms. Similarly, the possibility of schwa apocope may also be seen as the result of storage of the phonetic output forms: since the vowel length distinction was kept in memory, the word-final schwa could disappear. This then made it necessary to consider vowel length as information that is part of the lexical representation.

Given this analysis, we avoid constructing a complete gap between two generations of language speakers and are not forced to assume that language change is caused only by the imperfect learning of the next generation that has to acquire the language on the basis of outputs. Language change is also an effect of the adult language user who is able to analyze the phonetic forms of words that are accessible in memory.

The consequence of the loss of transparency of a phonological process (rule opacity) is that it is no longer possible to compute or store an underlying form for a word that differs from its phonetic form (unless an alternation is involved). A distance between phonetic form and underlying form is only possible in the case of surface-true transparent processes. In the case at hand this means that the plural forms of these nouns, with their long vowels, must be stored for new generations as well since their phonetic forms cannot be computed. This is also the conclusion of Kager (chap. 17, this volume).

Since in Dutch the singular noun is identical to the stem that is the basis for morphological operations, it is the short vowel that appears in such cases.

(8) Singular noun Plural noun Derived word
gebr[e]k ‘handicap’ gebr[e]k-en gebr[e]kkig ‘handicapped’
h[o]l ‘hole’ h[o]l-en h[o]lletje ‘diminutive’
sch[e]ip ‘ship’ sch[e]ip-en sch[e]pper ‘skipper’
g[l]od ‘god’ g[l]od-en g[l]odelijk ‘divine’
sp[e]l ‘game’ sp[e]l-en sp[e]lletje ‘diminutive’
w[e]l ‘road’ w[e]l-en w[e]lletje ‘diminutive’
In a number of cases the alternation that existed between singular and plural nouns disappeared after the loss of the rule of vowel lengthening (so-called analogical leveling or paradigmatic leveling). This applies to, for instance, the following Dutch nouns, which have a short vowel in their stem-final syllable in both singular and plural forms.

(9) Singular noun Plural noun
 l[ç]k ‘leak’ l[ç]kk-en
 gem[æ]k ‘ease’ gem[æ]kk-en
 str[æ]f ‘punishment’ str[æ]ff-en

The traditional interpretation of these facts is that since the plural forms of these words were not stored, the regular forms with short vowels will show up after the loss of the rule of vowel lengthening. However, since the position is taken here that plural forms can be stored in their output form, the following interpretation is called for: the original plural forms of these words with long vowels did have a lexical representation of their own, but their frequencies, and thus their resting level of activation, was not high enough to block the formation of a regular plural form without vowel lengthening, that is, on the basis of the underlying form of the singular noun. This is also the point of view defended in Wetzel's (1981, 95–97), albeit of analogy: analogical leveling is nothing but the application of productive rules that blocked by the existence of stored forms.

20.4 Auslautverhärten and Lexical Storage

So far, our findings with respect to the lexicalization of vowel lengthening are in line with the conclusion of Wetzel's mentioned above. However, he argued that paradigmatic leveling takes place only if rules are no longer automatic phonological rules and hence require storage of allomorphs. Only if rules are no longer phonologically conditioned will the different allomorphs of a morpheme be lexically stored, which then may give rise to leveling by using the “wrong” allomorph. Since, according to Wetzel's, the outputs of automatic phonological rules are not stored, they will not lead to paradigmatic leveling. For instance, the alternations created by the automatic rule of devoicing of obstruents in coda position have not allomorphs to be discussed below, been leveled in Dutch. Therefore, we will now have a more detailed look at coda devoicing.

It is an uncontroversial assumption within mainstream Generative Phonology that the effects of automatic neutralization rules are not encoded in lexical representations. For instance, Kenstowicz and Kisseberth (1979, 49) argue on the basis of the Russian rule of word-final devoicing of obstruents that it would be wrong to list both
the allomorph with a voiced obstruent and the one with a voiceless obstruent in the lexicon and to assume a selection rule for the allomorphs stated as follows.

(10) "If a morpheme has alternants that differ with respect to the voicing of a final obstruent, select the alternate with a final voiceless obstruent when the morpheme appears at the end of a word; otherwise, select the alternate with a voiced obstruent."

The authors then add that the "basic criticism is that this sort of analysis fails to adequately characterize the rule-governed nature of the voicing alternation in Russian" (p. 49). That is, such an analysis implies that two rules have to be assumed for Russian: a phonological rule of devoicing and a morphological rule of allomorphic selection.

Language change again provides a window on this issue: if we do not lexically store the outputs of a neutralization rule (with the effect that each output is a possible underlying form), we predict that paradigmatic leveling will not take place. I will therefore have a look at a process similar to Russian devoicing: coda devoicing of obstruents in Dutch. Final devoicing in Dutch is a productive generalization: voiced obstruents cannot occur in codas. If there are two allomorphs for a lexical item with an alternation between a voiced and a voiceless obstruent, it is generally assumed that the underlying form that is stored is the form that ends in a voiced obstruent. If this voiced obstruent ends up in coda position, it is devoiced by the rule of final devoicing.

(11) rib [rip] / ribben [ribben] 'rib, sg/pl'
 hoed [hut] / hoeden [huden] 'hat, sg/pl'
 slaap [slaːf] / slaven [slaːven] 'slave, sg/pl'
 kiezen [kizən] / kiezen [kizən] 'molar, sg/pl'
 vliegen [vliɣən] / vliegen [vliɣən] 'fly, sg/pl.'

Interestingly, in some cases the alternation is lost. For instance, although we have the alternation hand [hant] / handen [hândən], there is an idiomatic phrase bijdehand [beidshant] 'lit. at the hand, bright' that functions as an adjective. One of its inflected forms in prenominal position is bijdehante [beidshanta], that is, there is no alternation between voiced and voiceless obstruent anymore.

In Van Loey (1964, 54) the rise of forms such as bijdehante is interpreted as a case of paradigmatic leveling (analogy), which would suggest that the allomorph [hant] of hand is stored. However, the problem for this account is that it does not explain why paradigmatic leveling almost never takes place with respect to effects of final devoicing. Another interpretation is therefore called for. The language learner only computes an underlying form that differs from the phonetic one if (i) the two words involved are related, and (ii) the two surface forms are relatable by means of
a transparent rule. In the case of bijdehand, with its inflected form bijdehande, this adjective has no transparent formal relation to the word hand with its plural form handen, and thus it will be stored with a final /t/. In other words, we can only get underlying forms that differ from the surface forms if there is a transparent morphological relation between the words in which the different allomorphs occur (see Wetzels 1981). Thus, the form bijdehande is not a counterexample to Wetzels’s 1981 claim that automatic phonological rules do not lead to leveling.

Another interesting case is the word stad [stad] ‘town’ with the irregular plural form steden [ste:don]. The plural noun not only exhibits vowel lengthening but also vowel quality change, from /a:/ to /e/. Consequently, the underlying form of stad is apparently computed as /stæt/, as shown by new coinings, such as the verb statten ‘to do shopping in town’ derived through conversion from the noun stad ‘city’ and the inhabitant name Lelystatter derived from the toponym Lelystad.

A similar phenomenon can be seen in Afrikaans for a number of nouns that have plural forms with lengthened vowels in Dutch. Apparently, the distance between smid ‘blacksmith’ and smeden (plural), for instance, is too large for speakers of Afrikaans, and thus they do not conclude a common stem /smid/. Thus, the lexical form of smid will be /smid/ rather than /smid/, and consequently the regular plural smitten has arisen.

(12) Dutch

<table>
<thead>
<tr>
<th>Afrikaans</th>
</tr>
</thead>
<tbody>
<tr>
<td>smid [smit]</td>
</tr>
<tr>
<td>gooi [gɔi]</td>
</tr>
<tr>
<td>lid [lɪd]</td>
</tr>
<tr>
<td>rad [ræd]</td>
</tr>
</tbody>
</table>

The point here is that precisely the nouns with the unproductive vowel length alternation exhibit paradigmatic leveling with respect to the still transparent rule of coda devoicing.

In the case of the words with the vowel-length alternation discussed above, there is also internal evidence for the storage of the effect of coda devoicing in the lexical entry, because vowel length plays a role in the distribution of fricative consonants. The generalization is that /v/ and /z/ occur only after long vowels, the ‘v/z-constraint’.

Interestingly, we find the following alternations.

(13) Nouns

<table>
<thead>
<tr>
<th>Afrikaans</th>
</tr>
</thead>
<tbody>
<tr>
<td>graf [graːf]</td>
</tr>
<tr>
<td>hof [ɦɔf]</td>
</tr>
<tr>
<td>glass [ɣloːs]</td>
</tr>
<tr>
<td>staf [staf]</td>
</tr>
<tr>
<td>verlof [verlof]</td>
</tr>
</tbody>
</table>
Lexical Storage and Phonological Change

Verbs, past tense, SG/PL.

las [laz] → lazen [la:zen] → 'read'
genas [yans] → genazen [ya:zen] → 'cured'
gaf [yaf] → gaven [ya:van] → 'gave'
vergaf [veryaf] → vergaven [verya:van] → 'forgave'

Noun-verb pairs

draf [draf] 'trot' → draven [dra:van] → 'to trot'
lof [lof] 'praise' → loven [lo:van] → 'to praise'

genas → gaf → 'trot'
genazert → gaven → 'to trot'
gaf → genazert → 'to praise'
gaf → gaven → 'to praise'

In all these cases, short vowels are followed by a voiceless fricative, whereas long vowels are followed by a voiced fricative. In other words, all allomorphs obey the constraint on the distribution of /v/ and /z/. In these cases, the voicelessness of the final obstruent is also part of the underlying form, although this information is predictable and although these obstruents alternate with voiced ones. We know this on the basis of the forms of complex words derived from such nouns: these words are derived either from a form with short vowel + voiceless obstruent or from a form with long vowel + voiced obstruent; the combination short vowel + voiced obstruent does not occur.

(14) Denominal word formation

- gl[ə]zenier's 'stained glass artist' → *glazzenier
 h[ə]lijk 'polite' → h[ə]lveling 'courier' → *hovveling
 best[ə]ving 'staff' → st[ə]ven 'to prove' → *bestavving
 l[ə]lijk 'praiseworthy' → l[ə]ven 'to praise' → *lovelijk

On the other hand, if the noun ends in a stop or a velar fricative, this restriction does not apply, and the morphology can apply to underlying forms with a voiced stop.

(15) Singular Plural Derived word

god goden gl[ə]ddelijk 'divine'
bad baden b[ə]dderen 'to bathe'
wegen w[ə]ggetje 'small road'
The /v/z-constraint thus restricts the distance between phonetic form and underlying form.

Van Loey (1964, 54–55) also mentions a number of cases in which leveling in favor of the allomorph with the voiceless obstruent took place, where no additional alternations are involved that make the two allomorphs different in other respects as well. Examples from 17th-century Dutch are

(16) Middle Dutch gewaet 'dress' / gewaden 'pl.' > 17th-century Dutch gewaeten
Middle Dutch cieraet 'ornament' / cieraden 'pl.' > 17th-century Dutch cieraeten

In these cases the allomorphs with final [d] have been restored in Modern Dutch.
There are also cases in present-day Dutch of this kind of leveling. An example is the adjective *boud* 'bold'. Originally, the inflected form of this adjective was *boude*, but most speakers of Dutch say *boute*, which shows that the alternation [d/t] has been leveled out. What these examples show is that leveling in favor of the allomorph with the voiceless obstruent is possible. This kind of leveling can be due to imperfect learning: the language user did not yet compute the correct underlying form of the noun on the basis of the alternation between the singular and plural forms, although the alternation is transparent. Therefore, the underlying form is identical to the phonetic form of the singular noun.

We may thus hypothesize that we store phonetic forms and that underlying forms are computed on the bases of stored phonetic forms (a similar position is taken in Leben and Robinson 1977 and Leben 1979). Underlying forms will differ from phonetic forms only insofar as that difference follows from transparent phonological rules. If the distance between two forms is too big either semantically (the case of *bij-dehand*) or because the formal differences are too big (*stad-steden* and the Afrikaans cases), the underlying forms will not differ from the surface forms. A structural constraint such as the Dutch *vz*-constraint will also block the computation of an underlying form that is different from the surface form of a word, even though there is an automatic alternation involved.

20.5 Lexical Diffusion

In the early stages of generative phonology, phonological change was seen as the addition of a rule at the end of the grammar. That is, the lexical representations do not change, but the corresponding surface forms are affected by the application of the added rule. It is only the new generation that will have different lexical representations with the effect of the added rule lexically encoded, except when it is a rule that creates alternations. In the latter case, lexical representations will not necessarily change (Kiparsky 1968b).

A problem for this view is that phonological changes in progress often affect lexical representations but are also simultaneously the source of phonological alternations. For instance, Dutch is subject to a process of [d]/-weakening in which intervocally, [d] is replaced with the glide [j] before a following, suffix-initial schwa (Booij 1995, 90). This causes alternations of the following type.

(17) goed ‘good’, inflected form *goed-e*, phonetic form [yuda] or [yuja]

goed-ig ‘good-natured’ [yudox] or [yuex] but obligatorily to the derived noun
goeierd [yujart] 'good-natured person'; the form [yudart] is impossible. But other adjectives with stem-final /d/ do not always allow weakening. The adjective wreed 'cruel', for instance, does not have the inflected form [wre:ja] for wreed; the only form possible is [wre:da]. Similar observations apply to processes such as /d/-deletion in Dutch (Booij 1995, 90). The lexically governed nature of these alternations implies that they must be stored lexically, even in the case of morphologically completely regular inflected forms of adjectives such as goed-e.

The facts of /d/-weakening support Kiparsky's (1988a, 1995) claim that it is lexical, that is, neutralizing rules that exhibit lexical diffusion, since the distinction between /d/ and /j/ is phonemic in Dutch. What is essential from the perspective of this chapter is that they support the view that information provided by rule and information that is lexically stored are not mutually exclusive.

These allomorphy facts imply that the recognition system of language users must have a certain robustness because they have no problems in relating goed to goeie and goeierd notwithstanding the phonological differences in the lexical representation of the shared part of these words, the lexical morpheme goed. That is, apparently the phonetic forms of a morpheme do not have to be computed by rule from a common underlying form to be recognizable as allomorphs of that morpheme (contra Lahiri and Marslen-Wilson 1992).

In the case of /d/-deletion an intervocalic /d/ is deleted and replaced with a predictable hiatus-filling glide. For instance, the inflected adjective oud-e 'old' can be pronounced as [oudə] or [ouwa]. Both forms must be stored because it cannot be predicted which form allows for /d/-deletion. The phonetic difference even correlates with a semantic difference in the case of the adjective + noun phrases oude hoer [ouda ha:ə] 'old whore' (the literal meaning) versus ouwe hoer [ouwa ha:ə] 'talkative person'.

Labov (1981, 1994) proposed to distinguish two types of phonological change: change that is phonetically gradual and affects all relevant words and change that is phonetically abrupt, replaces a phoneme with another one, and is lexically gradual, that is, exhibits lexical diffusion. Kiparsky (1988a) argued that the distinction between phonetically gradual and phonetically abrupt changes coincides with the distinction between postlexical and lexical phonological rules. The rules of /d/-weakening and /d/-deletion can indeed be considered lexical rules since they are neutralizing. As expected, they have exceptions and thus exhibit lexical diffusion. Lexical diffusion always creates surface opacity for rules since the speaker will find forms that have not undergone the rule. Therefore, as stated above, opacity will lead to lexical storage in the sense that for each phonetic form of such words a distinct lexical entry has to be created. This in turn explains why semantic distinctions may correlate with phonological differences, as in the pair oude hoer/ouwe hoer discussed above.
What about the effects of postlexical rules? The usual assumption (see Kiparsky 1988a, 399) is that the effects of such rules are not encoded in lexical representations. Bybee (2000a) has questioned these assumptions. She argues that a change may be both phonetically and lexically gradual. This implies that the effects of such gradual changes must be lexically stored in the lexical representations of individual words.

Vowel reduction in Dutch (Booij 1982, 1995; Van Bergem 1995) is a potentially interesting phenomenon in this respect because it has both lexical and postlexical properties. The basic generalization is that at the phonetic level all unstressed vowels are affected by reduction in the sense that their actual realization can be quite far away from the target values of the acoustic parameters of these vowels (Van Bergem 1995). In addition, there is a lexical process of vowel reduction of vowels in unstressed (nonword-final) syllables that has already affected many words whose full vowels have been replaced with schwa, as have the italicized vowels of the following words.

(18) televisie ‘television’
 álgebra ‘algebra’
 serenáde ‘serenade’
 recláme ‘publicity’
 betón ‘concrete’
 repetítie ‘rehearsal, test’
 conferéntie ‘conference’

Moreover, there is also a large number of words that exhibit vowel reduction in more casual speech only, that is, there is still alternation.

(19) banáan ‘banana’ [baːnaːn] / [banaːn]
 politie ‘police’ [poːliː] / [polisi]
 minúut ‘minute’ [minyt] / [manyt]

These facts of vowel reduction nicely fit into Kiparsky’s two-stage theory of phonological change: “the phonetic variation inherent in speech, which is blind in the neogrammarian sense, is selectively integrated into the linguistic system and passed on to successive generations of speakers through language acquisition” (Kiparsky 1995, 642). Vowel reduction, originally a purely phonetic process motivated by ease of articulation, could become a lexical rule subject to lexical diffusion because the schwa is a phoneme. As a lexical rule, it can be seen as a process in which the place of articulation features of vowels in unstressed syllables are removed from the lexical representations of words; subsequently, a default rule will fill in the relevant features of the schwa (see Kiparsky 1995, 642–647 for this interpretation of lexical diffusion). Simultaneously, vowel reduction is a postlexical rule applying to vowels in syllables without lexical stress and a process of phonetic implementation for vowels (even those with lexical stress) that are not stressed in a particular utterance.
The alternation between full vowel and schwa is also visible in related pairs of words that differ in whether the relevant vowel is stressed or not; if the vowel is unstressed it can or must reduce. The words in (20a) exhibit optional reduction of the vowel in italics, whereas in those in (20b) the vowel in italics can be realized only as schwa.

(20) a. persóon 'person' péronnéel 'staff'
 percént 'percent' pèrcantage 'percentage'
 pastóor 'priest' pàstórál 'pastoral'
 b. proféet 'prophet' pròfetéer 'to prophesy'
 juwéel 'jewel' júwèlier 'jeweler'
 gêne 'embarrassment' genánt 'embarrassing'

That is, the words in (20a) are subject to the postlexical rule of vowel reduction, whereas the words in (20b) exhibit lexical diffusion effects. This implies that a morpheme like juweel will have two different lexical representations: /jyue:l/ when it is an independent word and /jyøal/ when occurring in juwelier. This does not cause any computational problem since words are the units of storage, and thus the two allomorphs will automatically appear in the right context. The only problem that the language user has to solve here is the recognition problem: how can both forms be recognized as forms of the same morpheme (a prerequisite for the semantic analysis)? But this is part and parcel of commanding a language since allomorphy that is not reducible to one underlying form is a widespread phenomenon, as we saw above (see also Booij 1997a, 1997b, 1998).

Van Bergem (1995) rightly qualifies this process of vowel reduction as a sound change in progress that came into being due to interpretation by the native speaker of acoustic vowel reduction as a process of replacement of full vowel with schwa and exhibits lexical diffusion, since in some words the unstressed vowel can be realized only as a schwa, as we saw above. Furthermore, this kind of reduction is boosted by high frequency: in high-frequency words, unstressed vowels are reduced more easily and more frequently than in low-frequency words. This is to be expected since vowel reduction reduces lexical contrasts and thus impedes word recognition. High frequency, on the other hand, boosts recognition and can thus compensate for the negative effects of vowel reduction.

The question then arises of whether the postlexical rule of optional vowel reduction in unstressed syllables is phonetically gradual or should be interpreted as the replacement in lexical representations of the full vowel with schwa by means of a phonological rule, just as in the case of the lexical rule of vowel reduction. If the first position is taken, this may have the further implication that the degree of reduction of the vowel is encoded in lexical representation. This position is argued for in Bybee (2000a,b) for some other cases of reduction and implies that details of the phonetic
realization of phonemes are lexically specified. Can we say something about this on the basis of Dutch vowel reduction?

The data in Van Bergem (1995, 121) show that there is a positive correlation between frequency and acoustic parameters: in high-frequency words the formant values for the unstressed vowels are farther away from the target values than in low-frequency words. Moreover, this correlates with how native speakers perceive these vowels: “the average number of schwa responses increases when the spectral distance between the test vowel and its target increases” (Van Bergem 1995, 125). These results are explained if the growing distance between the acoustic parameters of unstressed vowels in words of high frequency and those of the nonreduced correlates is lexically encoded: each time a vowel is reduced, its formant values move away from those of the unreduced vowel. This is the kind of explanation advocated in Bybee (2000a). The theoretical implication of this step is that lexical representations are not redundancy free as far as phonetic details are concerned, a position also defended by Ohala and Ohala (1995).

This position as to the lexical specification of vowel reduction effects is supported by the observation that data concerning optional vowel reduction can be obtained by means of introspection: native speakers of Dutch systematically know that certain words are more susceptible to vowel reduction than others. For instance, they know that the /i/ in minuut ‘minute’ is susceptible to reduction, whereas the /i/ in pilot ‘pilot’ is not. This suggests that such information is stored in memory.

The conclusion to be drawn is that phonological rules may be productive and automatic, and yet at least some of their outputs are lexically stored because the process exhibits lexical diffusion. In addition, it seems that phonetic details concerning the pronunciation of vowels can be stored, given the facts concerning the gradual erosion of unstressed vowels. Note, however, that this kind of stored information does not necessarily lead to a proliferation of distinct underlying forms (in the sense of “bases for morphological operations”) for a morpheme. This is a crucial difference between lexical and postlexical rules: it is only the effects of lexical rules that may lead to more than one underlying form for a particular morpheme.

20.6 Conclusions

In this chapter, we saw that the standard view in Generative Phonology of the balance between storage and computation has to be reconsidered. There is a wealth of evidence for the position that predictable information is stored in the lexicon. First, recent theoretical developments in phonology imply that predictable information about morphemes must nevertheless be stored in the lexicon. Second, data concerning phonological change show that computable information concerning the phonetic realization of morphemes nevertheless has to be stored lexically. I also proposed that
we should take a radical step with respect to the relation between underlying form and phonetic form: it is not the phonetic form that is computed by the speaker but rather the underlying form. Like storage in general, storage of phonetic forms of words will speed up processing; it is only when we coin a new word that computation of the underlying form of the base word is necessary.

These conclusions do not refute the position that the human language faculty has a dual structure: a lexicon with stored representations and rules. The native speaker does need rules for the perception and production of novel forms. What, however, these conclusions do refute is the position that computation and storage of information with respect to the same process or regularity are mutually exclusive.

Notes

I would like to thank Joan Bybee, Sharon Inkelas, Jaap van Marle, and Leo Wetzels for their comments on an earlier draft of this paper.

1. A more radical position not taken in this paper is that of connectionism, in which the distinction between rules and representations is denied (see Pinker 1999 for discussion of this issue).

2. This is the standard view in the Dutch (and more generally, the European) morphological tradition (see Schultink 1962; Matthews 1974; Booij 1977; Van Marle 1985). It is also a cornerstone of Bybee's morphological work (see Bybee 1988).

3. Early exceptions are Leben and Robinson (1977), Tiersma (1978), and Leben (1979), who argued that rules such as Trisyllabic Laxing in English are to be seen as parsing rules with primarily a redundancy rule function.

4. An additional argument for redundancy-free lexical representations has been that by omitting redundant properties and assigning these properties at the end of the phonological derivation by means of default rules, the inertness of such properties in phonological derivations follows. However, it has become clear that there is a substantial number of cases in which default or unmarked features such as the feature [coronal] for consonants do play a role in phonological processes, that is, are not inert (see McCarthy and Taub 1992; Booij 1993; Hall 1994). Note, however, that it may be the case that underspecification may be necessary in cases of alternations (Inkelas 1995).

5. See also Gussenhoven (this volume) and Kager (this volume) about vowel length in Dutch.

6. There are four exceptions: the loan words mazzel 'good luck', puzzel 'puzzle', razzia 'raid', and the name for railway kiosks wizzel, a form intentionally coined as a marked form with a high attention value.